Translational termination without a stop codon
نویسندگان
چکیده
منابع مشابه
The involvement of base 1054 in 16S rRNA for UGA stop codon dependent translational termination.
The deletion of the highly conserved cytidine nucleotide at position 1054 in E. coli 16S rRNA has been characterized to confer an UGA stop codon specific suppression activity which suggested a functional participation of small subunit rRNA in translational termination. Based on this structure-function correlation we constructed the three point mutations at site 1054, changing the wild-type C re...
متن کاملTranslational termination efficiency in mammals is influenced by the base following the stop codon.
The base following stop codons in mammalian genes is strongly biased, suggesting that it might be important for the termination event. This proposal has been tested experimentally both in vivo by using the human type I iodothyronine deiodinase mRNA and the recoding event at the internal UGA codon and in vitro by measuring the ability of each of the 12 possible 4-base stop signals to direct the ...
متن کاملStructural Basis for Translation Termination on a Pseudouridylated Stop Codon.
Pseudouridylation of messenger RNA emerges as an abundant modification involved in gene expression regulation. Pseudouridylation of stop codons in eukaryotic and bacterial cells results in stop-codon read through. The structural mechanism of this phenomenon is not known. Here we present a 3.1-Å crystal structure of Escherichia coli release factor 1 (RF1) bound to the 70S ribosome in response to...
متن کاملPolypeptide chain termination and stop codon readthrough on eukaryotic ribosomes.
During protein translation, a variety of quality control checks ensure that the resulting polypeptides deviate minimally from their genetic encoding template. Translational fidelity is central in order to preserve the function and integrity of each cell. Correct termination is an important aspect of translational fidelity, and a multitude of mechanisms and players participate in this exquisitel...
متن کاملPartitioning between recoding and termination at a stop codon–selenocysteine insertion sequence
Selenocysteine (Sec) is inserted into proteins by recoding a UGA stop codon followed by a selenocysteine insertion sequence (SECIS). UGA recoding by the Sec machinery is believed to be very inefficient owing to RF2-mediated termination at UGA. Here we show that recoding efficiency in vivo is 30-40% independently of the cell growth rate. Efficient recoding requires sufficient selenium concentrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 2016
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.aai9127